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Symbolic computation provides excellent tools for solving quantum mechanical problems 
by perturbation theory. The techniques presented herein avoid the use of an infinite basis set 
and some of the complications of degenerate perturbation theory. The algorithms are 
expressed in the Maple symbolic computation system and solve for both the eigenfunctions 
and eigenenergies as power series in the order parameter. Further, each coefficient of the per- 
turbation series is obtained in closed form. In particular, this paper examines the application 
of these techniques to R. A. Moore’s method for solving the radial Dirac equation, One is 
confident that the techniques presented will also be useful in other applications. 0 1990 

Academic Press, Inc. 

1. INTRODUCTION 

The purpose of this work is multifold. One aspect is to demonstrate the 
applicability and usefulness of symbolic computation for the analysis of certain 
physical problems. Another is to present the solution to a realistic non-trivial 
problem. Finally, a number of derivations and procedures required for the above 
analysis are given. 

There are a number of reasons for considering the present approach. Most 
physical problems of current interest cannot be solved exactly in analytic form but 
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require some approximation techniques, such as ~ayleig~-~cb~~di~ger pertur 
tion theory for quantum problems. A known difficulty with the conventio 
approach to perturbation theory, which uses a set of basis frictions, is that 
computations beyond first order in the eigenenergies become impossibly tedious. In 
the event that higher order terms are important, it is of interest to develop suitable 
methods to obtain their solutions. Further, once one has a method ntiated 
for a certain class of problems, its extension to more cQmpl~cated pro car-l be 
made with some confidence. In addition, analytic results can be used to test numeri- 
cal procedures required in situations where analytic results do nst exist. 

Since a rather diverse set of concepts and procedures are combined, that is, sym- 
bolic computation, quantum mechanical perturbation theory, methods for solvmg 
ordinary differential equations (e.g., the methods of “variation of parameters” and 
ladder operators) and computationally efficient formulas, a rather detailed survey 
is presented. 

The aple [ I] symbolic computation system is used because it is available to 
the authors and because it is suitable for the type of problems considered. 
symbolic computation systems may also be applicable. It will be shown th 
not always necessary to resort to numerical procedures in order to solve higher 
order perturbative equations. The advantage of symbolic computation is that one 
can obtain a series solution in which each term of the series is in closed form. 
Another advantage occurs when the series in question is sl y convergent or 
divergent. In such cases Pad& techniques are usually applied. 
instabilities are often encountered when the Pad& values are c 
point arithmetic. This occurs when the results are sensitive to round off errors [2: 
p 6131. In this event, the results become unreliable and inconclusive. An algebraic 
solution avoids such difficulties. 

.The particular physical problem analysed is the one-particle 
hydrogen-bike atoms. There are a number of reasons for this ch 
solutions exist, e.g., [13], and hence, any approximate solution ca 
each step. Second, this problem is sufficiently complex so that the methods 
applicable to it should suffice for similar yet more complicate problems. Third, a 
perturbative formulation exists which has received some anal ic treatment [4-g] 
and numerical evaluation [lo] to low order. The oblem and the ~ert~~~~~ve 
scheme are reviewed in Section 2. The zeroth and St-order solutions are sum- 
marized in Section 3 so that the notation can be specified, the operators defined, 

er of relevant expressions be readily available. inally, in this section 
the inhomogeneous equations that must be solved at the jt e corre- 
sponding energy contributions are defined. 

ecause the total angular momentum commutes with the amiltonian, the eigen- 
functions can be written in terms of products of radial func$ions and angular 
momentum functions. In this case, the inhomogeneous equations reduce to ordinary 
differential equations in the radial variable. The methods employed in this work are 
reviewed in Section 4. 

lt is well known that, when the eigenfunction is known to a given order, 
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say, the eigenenergy can be determined to order U(2j + 1). This result and the 
eigenfunction normalization are used to generate computationally efficient energy 
formulas. These are given and discussed in Section 5. 

Having specified the quantities to be calculated, the next step was to perform the 
actual computations. The important details of the Maple programs used are pre- 
sented and discussed in Section 6. These programs generate a number of results 
which are given, analysed, and discussed in Section 7. The eigenfunctions have been 
computed for the first 16 states up to and including the fifth order and, hence, their 
eigenenergies computed to eleventh order. The eigenenergy results are compared to 
other works and in all instances exact agreement is found with the power series 
expansion in terms of the line structure constant, a, of the exact eigenenergy. Thus 
the concerns raised by Tomishima [7] are completely negated and the validity of 
the procedure established. It is anticipated that this procedure will be useful for 
other problems. In addition, a procedure is outlined by which possible exact solu- 
tions to the eigenenergies may be inferred from a few of the leading terms of a 
perturbative calculation. Next, the matrix elements appropriate for the Stark effect 
and the electric dipole transitions are evaluated and the coefficients of the CC’ and 
a2 terms tabulated. The analytic results again verify the previous numerical results 
[lo]. Finally, the hyperline splitting is evaluated with these analytic results 
verifying the previous numerical results [lo]. In this way, the concept of being able 
to calculate the coefficients in ~1~ expansions with some accuracy is justified for 
particular well defined problems. 

The application to other systems is discussed briefly in Section 8 and the paper 
closes, Section 9, with a few comments and conclusions. 

2. MOORE'S DECOUPLING TECHNIQUE FOR THE ONE-PARTICLE DIRAC EQUATION 

2.1. The Hierarchy of Equations 

Starting with the one-particle Dirac equation 

(coi.$+/?moc2+IV)@=E@, (1) 

where the notation is defined in [4], the Hamiltonian is rewritten as 

A=Ej,+;lEi,, (2) 

where 

and 
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r\Tow the problem is treated formally as though fi, were a perturbation with ;1 being 
the usual order parameter but to be evaluated at 2 = c?. Thus, both the energy an 
eige~fu~ctions are written as 

E=(E,+/lE,+i~*E,+ . ..I= (3) 
p=o 

p=O 

oore’s hierarchy of equations is obtained by applying formal ayleigh- 
Schrodinger perturbation theory to the eigenvalue equation giving 

i=O 

etc. Note that fi; is the perturbation in Moore’s work [4-6] and that the fine- 
structure constant in the scheme presented here is used both as a constant an 
fix the final value assumed by i. Therefore, the various terms in tbe perturbative 
expansions such as the energies E,, E,, etc. will also depend on X. To understand 
the hierarchy, one must carefully recognise this distinction between the two roles 
played by the fine structure constant. For spherically symmetric 
the familiar angular momentum operator I? commutes with b 
Therefore, one can separate the wave function into its respective radial and 
spin-angular components as usual. 

3. LOW-ORDER SOLUTIONS FOR HYDROGEN-LIKE ATOMS 

3.1. Zero-Order Solution 

The low-order solutions to a hydrogen-like atom are reviewed in this section in 
order to have certain expressions at hand and to set the notation. ore details can 
be found in [4-6, S-101. Letting 

@O=A 3k”(: 
c 1 pi 

16? 

in the A0 equation of (5) where !Py and Y; are two-component ‘nom and A is 
some constant allowing @’ to be normalised when !Py is normali 
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and 

cd. p?$) + vuy = &g Yf, (8) 

where s0 = E, - m0c2 and V(r) = -Ze2/r, the hydrogen-like potential. Eliminating 
Yi gives 

if&+( l+$) (V-&J} YY=G) YY=O. 

The exact solution becomes obvious by setting 

y: = R?(r) G,, 

which makes, see (7), 

y; = R;(r) tit,> 

(10) 

(11) 

where the $L, are the spin-angular functions of g [4, p. 12431. Defining 

Z’=(f+&)Z and t=2Z’r/na,, (12) 

the radial equation can be written as 

d2 2d 

z+tz- 
IC(IC-1) n 1 
-+-; 

t2 1 Ry=L(t) R;=O. (13) 

Here K = I + 1 or - 1. This is an amazingly simple result for it represents just a 
hydrogen-like system containing only a slightly renormalized potential and 
eigenenergy. One has only a one component equation which can be solved exactly! 
The effective eigenvalue is 

Solving for s0 yields 

(14) 

(15) 

where R, = cx2m,,c2/2 is the Rydberg energy unit. The normalized radial solutions 
are 

(n-l-l)! 
2n[(n + [)!I3 

1i2Xtle-i,2L (t) 
nl 2 iW 
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where the L,;s are the Laguerre polynomials. Ri is given by 

R;= - --~ 
Y 

~orma~~z~ng CD0 requires 

/p=1+* 
2m,c2’ 

3.2. First-Order Sohbn 

Since both the complete solutions and @ are eige~fnnctio~s of the total angular 
momentum operator, the energy E, is obtained using ~Q~-degenerate perturbation 
theory: 

This can be evaluated exactly [IS] to give 

Collecting E, and E, and computing the Taylor series expansion in x2 of (3) gives 
the eigenenergy E correct to order ~1~. The terms of order 01~ can certainly be col- 
lected at this point but they will clearly not give the total contribution. To im 
the energy calculation, it is necessary to solve the first order equation 

roceeding as with the zero-order equation and setting 

then 

or, with (71, 

l- 
Co‘.@ 

2 - (moc2 + E,) 
yl:+ (23) 

The angular dependence of each component is the same, allowing one to write 
Y i = I?: $A,,, and to proceed as in the previous section. Thus 

L(t) R: =S(t), (241 
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where L(t) is given by (13) and 

One notes that in Eq. (2.19) of [S], some terms of order ~1~ were omitted in f(t). 
The exact solution to this equation is given in S. Lee’s Master’s thesis [9, p. 151 

and reported elsewhere [S]. Note that in [8], a term proportional to dRT/df was 
omitted since it contributed nothing to calculations of order a4. 

3.3. Jth-Order Solution 

Proceeding as with the first-order case, set 

where Yi, = Rht+&, k = 1,2 (26) 

and obtain for the lower component: 

(27) 

Now, the equation for the upper component is 

Ei!P;-‘-$ Y/i-‘}+A2 i Eiyi-i, t-28) 
i=l 

where L(p) is given in (9). This reducmes to an inhomogeneous equation of the 
form (24) 

with 

L(t)Rf =jj(t) (29) 

@d(t)= -$(-$+q) Im @, EiR$-‘-yRipl) 

+ i E,R:-‘. 
i= 1 

Recalling that the radial function of the lower component is imaginary, just as in 
the zero-order case in (17), the symbol Im indicates imaginary part of the argu- 
ment. The potential V(r) is rewritten as V(t). 
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All the solutions of the inhomogeneous equations are subject to the condition 
that the final wavefunction CD be normalised. I.e., 

by substituting the series solution of (4) into the above, this condition becomes 

/lo: 

A’: 

etc., or generally, 

iM 
i=O 

and 

(@O/QO)=l 

(@OI@‘)+ (CD’1 
(31) 

1, 2, ..~) .j-i=-j I , where j= 0 

M”,= (@‘(@s). (32) 

Finally, once the various inhomogeneous equations are solved: the jth-order energy 
can be calculated from the conventional formula: 

In the next section, a method is presented to systematically solve for any of the 
various inhomogeneous solutions, without the use of formal degenerate perturba- 
tion theory. For the example shown, these are obtained in closed form. The 
approach uses simple methods of ordinary second-order differential equations. 

4. PROCEDURE FOR SOLVING THE INH~MOGENEOUS EQUATWNS 

4.1. Method 

First, consider only the ground state Is,,, (n = 1, I= 0, and K = 2). In this case, 
the radial eigenfunction (to within a normalisation constant) is simply 

R:(t) =yl(t) = e-‘I*, 

which is one solution to the homogeneous equation (13). Note that the latter is 
second-order and can be written in the standard form. 
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where 

P(t)=? and Q(t)= +-v, 

There is another solution, y2(t), which is linearly independent to yr(t). Given yl(t), 
y*(t) can be generated by the method of “reduction of order” [ll, p. 1001, 

where W is the Wronskian, 

W(t)= W(y,,,,)=exp(-IP(t)dt)=t-‘. 

For the ground state, 

y2(t) = eC’/“Ei(t) -T, 

(36) 

(37) 

(38) 

where B(t) is the exponential integral [12, p. 228 (Eq. 5.1.2)]. Although this 
solution is mathematically present, it is non-square-integrable and, therefore, 
unphysical. The solution y2 represents the ghost state of the ground state. Each 
physical eigenfunction has its own “ghost” state and, in all cases, the latter is 
irregular and thus non-square-integrable. These “ghost” states are well known 
because they must be included when one solves the Schrodinger equation for the 
truncated Coulomb potential, a model used by nuclear physicists [13, p. 3301. Now 
that two independent solutions of the homogenous equation are known, the 
particular solution to the inhomogeneous equation is given by the method of 
“Variation of parameters” [ 11, p. 1211 and is 

where 

Y, = u(t) Yl(f) + 4t) y2(t), (39) 

Y2(t)f(t) 
u(t)= -1 W(y,, y2) dt and 

@)=S W(y,, yz) 
v1(t)f(t) dt 

. (40) 

If the calculated particular solution yP is square-integrable, it represents the desired 
physical solution. In this case, the general solution to the inhomogeneous equation 

YG=Yp+C1Y1+GY2 (41) 

is given with C, = 0 and C, being determined by the orthogonality requirement. If 
the calculated solution y, is not square-integrable, it is be necessary to add the right 
amount of “ghost” state y2, in order to make it square-integrable, that is, C, # 0. 
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Fortunately, this eventuality has not arisen so far in our calculations and; as 
cussed further on, the particular solution of thejth inhomogeneous equation for the 

c hydrogen problem is always a square-integrable function, albeit a 

An important distinction is in order here. In systems such as the nuclear model, 
the “‘ghost’ states are usually called “companion states” because they appear in the 
physical solution, the truncation of the Coulomb potential at the origin having 
ensured that these solutions are square-integrable No such truncation appears in 
this application. Although these “ghost” states are used in the calculations 
never appear in the final solution. It is for this reason that they are called “gh 
states, herein. Note that one could have solved the inhomogeneous equations usm 
Green’s functions An approach similar to the one presented here also uses regular 
and irregular wavefunctions to construct a Green fun solution of the 
inhomogeneous equation and can be found in the work of on and Fuller [44, 
p. 420). However, this method is more complicated and unnecessary in this 
particular application. 

4.2. Generation of “Ghost” States Using Ladder 

For the ground state, or any other state where l= n - 1, the Legendre ~o~y~~~ia~ 
is just a constant and the “ghost” states are easy to calculate using the i~te~~at~~~ 

. I-Iowever, this integration rapidly becomes tedious for increasing 
low values of 1. For instance, for the 3$,/Z state (n = 3, 1= 0, K = l), 

one must calculate 

$ 
e’ 

t2(6 _ 6t i t2)2 ‘t’ 
(42) 

To evaluate this integral, the roots of the Legendre polynomial in the denominator 
of the integrand must be determined. They are 3 F ,/%. Factoring the denominator 
and expanding it into partial fractions, the Maple system can be used to integrate 
the resulting expression, term by term, to yield the ghost state, namely, 

& [(5t-t’-2)eci2 + (6t- 6t2 + t3)E,(t)e-‘!2]. 

This direct interactive method becomes impossible for the IZ 3 4, 1= 0, K = I 
states. A much more efficient algorithm can be obtained by using ladder operators. 
Infeld and IIull [15] have compiled raising and lowering operators for a large class 
of physical problems. Their precise definitions for the Whittaker function [i2, 
p. SOS] permits one to express the solution of the radial equation for the hydrogen- 
like atom as 
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where C is a constant. The raising operator, as given by Eq. (5.1.6b) of their work 
[15, p. 371, gives 

R n+l,l(t)=cx (t-;-i) t&,,,(t), 

where C is determined by normalisation requirements. This ladder operation 
increments n and leaves 1 constant. It is found that this same ladder operation 
works for the set of “ghost” states as well. This is not surprising since nothing in 
the ladder operator makes explicit use of the requirement that the wave function be 
normalizable. One proceeds by using the integral in (36) to calculate the “ghost” 
state for I = y1- 1. This operation is fairly fast using Maple. For any other “ghost” 
state of given I, one simply ladders up inn. In our case, the constant is determined 
so that the Wronskian remains unchanged from its value in (37). This is a highly 
efficient method for determining the “ghost” states. 

5. FORMULAS FOR EFFICIENT ENERGY CALCULATIONS 

According to the conventional formula, the third-order energy E3 is given by 

which requires the knowledge of Q, to second-order. However, Hylleraas [16] first 
showed that the third-order energy could be calculated by the wave function to first 
order and that E, is also given by 

Furthermore, the knowledge of @ to second-order is enough to calculate the 
energies to fourth and fifth order. These are special cases of a well-known result in 
quantum chemistry, namely, knowing the wave function to order O(j), allows the 
energies to be calculated to order 0(2j+ 1). Dalgarno and Stewart [ 171 made 
explicit demonstrations of this theorem. Hirschfelder et al. [IS] provide general for- 
mulas for the energies calculated for the same normalisation conditions as in (31). 
The gain in computational efficiency is obvious. The efficient formulas for energies 
according to our normalisation scheme are given by the following. These are 
divided into even and odd cases. 

P--l 

Ej=(@p-‘j I?, I@‘- c Ei i M;‘,“-i+EpM;, 
i=l m=l 

where j= 2p, p= 1, 2, 3, . . . . (48) 
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with the understanding that the summation is void for p = 1 an 
elements are real-valued, and 

E,= (CD”] Ei, I@“)- i Ej 
1 

Mp+m- i 
p--mil’ 

i=l ,n = 1 

where j=2~+ 1, p= 1,2, 3, . . . . (491 

Exploiting, the orthogonality conditions, (49) can be reduced into a computa- 
tionally more efficient form, 

E,= (@“I fi, I@P)- i E,g(i,j), where j=2p+ i5 p= 1,2, ~.. (SO) 
;= 1 

with 
i ’ 

g(i, j) = 2 c q+;+f + q:j: 
m = I 

i ’ 
g(i,j)=2 c AZ-;?;;; 

YH=l 

if i=2i’+ 1, where i’ = 0, 1, 2, 3, . . . 

if i=2i’, where i’ = 1, 2, 3, 

Note that although the odd energy formula in (49) is identical with that of 
schfelder, there is a slight difference in the formula for the even ca themati- 
y, they are equivalent but Hirschfelder’s formula requires the c ation of 

i(p’ t-p) inner products, whereas, ours requires p - 1 less terms. Apparemly, his 
form does not fully exploit the full reduction that can be obtained by using the 
orthogonalisation scheme of (32). This may seem a trivial gain since the formulas 
grow as p2 for p large. However, as discussed later on, this gain is far from trivial, 
since the computations of the inner products represent that part of the computer 
algebra program which requires the most time and memory. The derivation of these 
efficient energy formulas is given in the Appendix. 

There is another type of normalisation which is commonly used. Instead of 
requiring that ( yl/ Y) = 1, the perturbed components of the wave function are set 
to be orthogonal, i.e.: 

(cDOj@‘)=O for j= 1, 2, . . . (51) 

this case, the energy relations are given by dugout-~o~rdeiet et al. [l 
owever, such a scheme is inefficient if one intends to use the wav~fu~ctio~ in 

calculation of matrix elements other than those required for the energies. 
Now the solution of the various inhomogeneous equations and the energy coef- 

ficients is reduced to calculating a series of definite and indefinite integrals. 

6. MAPLE PROGRAMS 

In this section a discription is given of the Maple program DI 
putes the radial wavefunction to order O(j) according to (29) and the eigenenergies’ 
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to order 0(2j+ 1) according to (48) and (50) for the sample problem examined 
herein. The listings of these programs are available upon request. The output from 
these programs and their by-products are discussed in the results section. The 
reader is referred to the Maple manual [l] for further information about the Maple 
system. Discussed in this section are the important features of the program, in 
particular: the Maple algorithms which solve the definite and indefinite integrals 
and the method employed in the manipulation and reduction of the resulting 
expressions. 

6.1. Definite Integration 

As mentioned before, the zero-order solution in (16) involves the Laguerre poly- 
nomials. The definite integrals required have the form: 

s 
cc 

eTf(tL(t) dt, (52) 
0 

where they(t) may also contain a Laguerre polynomial. Although, this term has the 
desirable feature of generality and was successfully used in low order, it must be 
pointed out that not all integrals of the form (52) are known or even readily 
available in tables. Furthermore, one cannot a priori expect closed form solutions 
for the higher order terms for all bound states. If one partially relinquishes this 
generality and tackles the problem for. only one given state, the Laguerre polynomial 
can be broken up and all the various inner products and matrix elements can then 
be decomposed into a sum of definite integrals of the form 

s 
m 

e -"ti In” t dt 
0 

(53) 

for u>O, i=O, 1, . . . and m =O, 1, 2, . . . . Although one has to compute many more 
definite integrals, individually, they are much easier to solve. This greatly increases 
the chance of obtaining a solution. Once the problem has been successfully solved 
for the ground state, one can then attempt to solve the more difficult problem of 
a higher state. This would be tedious to do by hand but presents no problem for 
a computer program. Program DIRACl is designed such that the user need only 
identify the state by specifying the quantum numbers n, 1, and rc. Obviously, it 
would be futile to run the program for the countable infinity of cases that represent 
all the bound states. However, most experimental results on atomic spectra usually 
involve no more than the first 16 states. 

The solutions of definite integrals of the class defined in (53) are available in the 
Maple system Version 4.3 [20,21], and the method of solution is illustrated by the 
following example. Consider the r function which is defined by 

IJz)=/om e-rtz-l dt and z > 0. (54) 
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By differentiating with respect to z m times then (54) gives 

es the class of integrals of (53) for zk = I. This formula can be trivially 
generahsed for ZL# 1 by the variable substitution x = it into (53) whereby In”(x/u) 
can be expanded and (53) is reduced into a linear combination of definite integrals 
of the form (55). The latter provides a straightforward means by which one can 
obtain the solutions of these various definite integrals. This simple idea is by no 
means new. What makes this method so powerful in this application is the exploita- 
tion of aple’s very fast and efficient d{ff routine for computing partial derivatives 
and its support of special functions. The solutions of (53) are in terms of well- 
known special functions, namely the I’(z), i(z), I/I(Z) and Il/(n, z) functions 1121. In 
some cases, these solutions reduce to closed form expressions. These special func- 
tions are supported by Maple via the GAMMA, the Zeta, and the Psi procedures. 

6.2. Indefinite Integrals 

The present version of Maple can solve indefinite integrals of the form 

s e -“‘ti In” t dt, (56) 

where i = 0, 1, . . . and m = 0, 1. However, in the present application the range of m 
must be extended to all positive integers. Furthermore, because of the presence of 
the “‘ghost” states, one needs to solve integrals of the form 

s e -U’t” In” fEi(Cf) de, (57) 

where c is a constant. Using partial integration, one generates another ~~tegra~~ 
where the function Ei(ct) is replaced by its derivative and thus the integral is 
brought to a more solvable form. For instance, for the case u = c = 1, s = 2, and 
m = 0, the solution by partial integration is 

7 

~+2t+21nt-(r2-t21+2)ePrEi(t!. (58) 

However, for the same example but with m changed to 1, partial integration yields 

[~+2ri3):nt+li12t-i+Zj~ dt-;-(3+(t’+Zt+Z)ln t+t)Ei(t)e-‘: 
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where it is not possible to express the remaining integral in the above in terms of 
the elementary functions and the exponential integral E(t) (courtesy of Manual 
Bronstein). Generalising this integral becomes 

I,(a, b, c, d, t) = j e-Y’Eij:t) lnd t dt: (60) 

where d= 0, 1, 2, . . . . For b = 1, then for certain values of a and c, where a > 0 and 
c # 0, (60) cannot be solved in terms of the elementary functions and the exponen- 
tial integral Ei(ct). Using partial integration, solutions are obtained for (56) and 
(57) for m = 0, 1, 2, . . . in terms of closed form expressions and integrals of the form 
(60) for b = 1. 

Although, it is not possible to solve the integrals I, in closed form, one can repre- 
sent and manipulate them algebraically by using symbolic computation. The 
methodology used for telling Maple about integrals of the form (60) was to: 
(1) Define a Maple procedure Il(a, b, c, d, t) which returns Il(a, b, c, d, t) if b = 1 
and a> 0. (2) Define a Maple procedure ‘d’iffizl’, such that differentiation of 
Zl(a, b, c, d, t) with respect to t returns the integrand of (60). Thus, the func- 
tionality of Maple’s diff routine is extended to understand the integrals of (60). 
Indeed all symbolic computation systems allow the user to extend some aspects of 
the functionality of the system. The integrals 1, (a, 1, c, d, t) could present a problem 
since they have no closed form solution. However, it turns out that, in the final 
computation of the particular solution of (39), all the I, integrals exactly cancel out. 
This cancellation also occurs for all terms involving the exponential integral. Thus, 
the particular solution of the jth inhomogeneous equation for the Dirac hydrogen 
problem is of the form 

C i uike-“lkfti Ink t, 
ik 

where ujk > 0. These are all examples of closed form square-integrable functions, 
albeit borderline cases; the integrand requiring special handling at the origin. The 
cancellations of all I, type integrals is not surprising since each of these functions 
is not square-integrable and should not appear in a physically meaningful solution. 

6.3. Manipulation and Simplification of Large Sums 

The program progresses iteratively through the orders as specified in (5). After 
the second iteration, the length and number of integrals to calculate becomes 
considerably larger. However, the maximum length of internal Maple objects is 
limited to 216 computer words. This length restriction means that Maple cannot 
represent a sum with more than 32,767 terms in it. If the integrands are fully 
expanded, the total number of terms required for the calculation of the fourth 
iteration of the 4s state alone exceeds this limit. 
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To overcome this limitation, the expressions are regrouped in a recursive form 
rather than using Maple’s default fully distributed form. This is done by using 

aple’s collect procedure. Just before integration, t 
multivariate polynomial in the functions of t, i.e., of the form 

c Qiikrt’(ePf/2)ilnk tEi(ct], 
i,i,k,I 

(62) 

where the coefficients QZikr are also multivariate polynomials in the matb~maticaI 
constants, 

where p = 1, 2, 3, . . . 

and the functions fm,(~) include irrational expressions. In this way, one is a 
reduce the maximum size of the sums in the expression. The resulting expressions 
are simplified by causing cancellations within the various sums. These cancellations 
are triggered by Maple’s collect procedure which rewrites the various expressions as 
univariate polynomials in t of the form 

xi aiti, 

where ai, a function of t and all the mathematical constants, is put in normal form. 
ot surprisingly, most of the memory and time is spent in the manipulation an 

simplification of these sums. These cancellations are essential in order to obtain t 
correct solutions. If these are not triggered, the program generates spurio 
integrals which are often non-square-integrable and “infinities” will appear in t 
tinal inner products. 

Table I lists the number of definite integrals and the ti 
required to compute all the terms of the jth iteration on a 
entries correspond to the total number of integrals, i.e., those integrals appearing 

TABLE I 

Number of Definite Integrals and the Time (in Seconds) for the jth Iteration 

State 

(fi, 1, K) 

j=l j=2 j=3 ,j = 4 

Terms Time Terms Time Terms Time Terms Time 

(1,O. 1) 180) 9 56(11) 35 123(15) 144 226(19) 560 
(2, 0, 1) 38(12) 18 98(15) 68 193(19) 296 330(23) 1213 
(2. 1, 2) 18(8) 11 56(11) 39 123(15) 167 226(19) 651 
(2, 1, - 1) 38(12) 16 98(15) 67 193(19) 289 330(23) IS64 
(33% 1) 58(16) 27 140( 19) 106 263(23) 476 434(27) 2052 
(‘4 0, : 1 78(20) 34 182(23) 150 333(27) 142 538(31) 3342 
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after the integrand of each inner product has been collected according to (62). Since 
the calculation of the definite integrals is the longest operation beyond second 
order, Table I provides an overall picture of how much CPU time program 
DIRACl consumes. Another feature of Maple is its option remember implemen- 
tation. Once an integral is computed, its solution is stored in a table and 
“remembered” by Maple for the remainder of the session. Consequently, an integral 
is computed only once and the actual number of integrals added to the “remember” 
table are listed in brackets with each entry in Table I. Although the total number 
of definite integrals is considerable and increases with each new iteration, the 
number of new integrals added to the “remember” table remains small and almost 
constant. 

In spite of the massive computations, it is found that the resulting energies 
collapse into relatively compact closed form solutions which can be obtained by the 
formula in (69) (derived and discussed later) and it will be shown that the resulting 
expressions are correct for this particular application. Thus, the Maple program 
DIRACl is fully vindicated by this formula; the intermediate computations, no 
matter how numerous, are handled correctly. 

The first 16 states can be calculated up to and including the fourth iteration with 
energies up to ninth order within a memory limit of 9 Mbytes. The smallest test 
run, which corresponds to the ground state, requires about 3.9 Mbytes and the 
largest test run, that of the 4s state, requires about 8.7 Mbytes. The computation of 
the fifth inhomogeneous equation for the 4s state with energies up to the 11th order 
required 25 Mbytes of memory and 20,118 s but this is understandable, since the 
intermediate computations of the j = 5 iteration alone required the manipulation of 
804 definite and 165 indefinite integrals. Nevertheless, succeeding in obtaining the 
energy coefficients E,, E,, E,, . . . . Eli, where E,, is of order O(az4) in closedform is 
a considerable achievement. 

Program DIRACl is simple, yet general and computationally efficient. As a 
means of comparison, the program computes both the Taylor series expansion of 
the exact solutions for hydrogen-like systems in powers of LX (as written in Eq. (1.1) 
of [S]), and the corresponding series expansion for the computed solution of (3). 
In this way, the user can verify for himself, that for a solution computed to within 
(and including) the jth inhomogeneous solution, the first 2j+ 1 non-zero energy 
coefficients after s0 are identical. All Taylor series expansions are preformed using 
Maple’s taylor routine. 

7. RESULTS 

7.1. Energies 

7.1.1. Results and Convergence 

The first-order energy E, as given by (20) is a function of the rest mass, the 
nuclear charge, the fine structure constant and the quantum numbers n and K. In 
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general, it is not obvious that the higher order energies can be expressed as such 
functions. It is found that, in fact, the energies are such functions althoug 
complexity of the formulas increases with order. For instance, the first few energies 
of the first 16 states are given by (15), (191, and 

Z6A6 E,= -I&--- 
1612~ 

This is also true for E,, E,, . . . . E, 1, that is, as far the computations have been taken, 
although they are too lengthy to list here. After substituting these energies into (3) 
and performing a Taylor series expansion of the resulting expression in powers of 
E, one obtains the exact solution of the Dirac equation for hydrogen-like systems 
up to and including order a22, given that the non-relativistic limit is the zero-order 
solution. 

The simplicity of these final results when compared to the massive inter-me 
computations is enough to imply the existence of a closed form solution” T 
known to be the case for this problem. It is of interest to relate this solution to the 
generalised solution provided by Rafelski et aE. [22,23] and recently cite 
Vrscay [24]. The Dirac equation of (1) is modified by adding a term b%‘(r) t 

amiltonian, where W(r) is a scalar potential. The term m + W(r) may be inter- 
preted as a coordinate dependent mass. Such modi~ed ~amito~ia~s have received 
much attention in the context of quark confinement 1251. Although, this system is 
very different than the one described in this article, its solution provides a useful 
general formula. For the case 

W(r)= -:, V(r)= -y (66) 

the exact energy is given by 

-@a,, 4 = -r,ol,$(n’+g)~(n’+g)2+~t--a,Z11’2 
mrJc2 (n’ + g)’ + Lx; 

> (67) 

where 

n’=n- 11~1, g=(K2+C+~;)"'*. 

Setting ct, = CX, = Zrs/2, the modified version of the Dirac Hamiltonian in (1) reduces 
exactly to the dj, of (2). Adding the perturbation fi, with the ordering parameter 
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/z to ii,, the resulting formulation can again be rewritten in the form of this 
modified Hamiltonian, where CI, and a, of (66) are respectively replaced by 

(68) 

and the energy is simply E(&, a:) with its functional form still being given by (67). 
The energies E, , E2, . . . are given by the coefficients of the Taylor series expansion 
of E(a:, ai) in powers of 1; i.e., 

E= f Eiili, 
i=O 

where (69) 

For A= a’, the term IV(v) vanishes and E(&, CC:) reduces to the well-known exact 
solution of the Dirac equation for hydrogen-like systems thus proving that Moore’s 
perturbative solution converges towards the exact solution for this particular 
application. 

The existence of a simple closed form formula such as E(ai, a:) is a fortuitous 
result and is not always obtainable for it requires the solution of a more com- 
plicated problem than the one presented so far. The intriguing question arises: 
Given a series solution where each of the coefficients is in closed form (possibly a 
series solution obtained for the first time for a given problem) and given that 
enough of these coefficients are available, is it possible to infer the closed form 
solution whose Taylor series expansion will generate the series? This question can 
be answered in the affirmative for some cases, as shown by the following exercise. 

7.1.2. Series Analysis-Algebraic Function Approximant 

In this section, a method for the construction of a closed form expression from 
the series in powers of ;1 to a given order, say order O(N), is presented. A Taylor 
series expansion of the heuristically constructed formulae in il will simply re-generate 
the series to order O(N). However, if the same formula can also correctly generate 
the series to higher order, one might conjecture that this constructed formula is the 
exact solution. Using the series solutions for the energies determined therein, the 
exact solution for hydrogen-like systems will be re-generated. However, it is 
necessary to start with some reasonable assumptions about the form of the solution. 

A discussion of this method can be found in the work of Baker and Graves- 
Morris on the application of Pad& techniques [26]. Note that the construction of 
a Pad& approximant for a given series is a specific application of this approach, 
namely the special case where the function in question is a rational polynomial. For 
our application, one considers the more general case of what is called an algebraic 
function approximant. At this point, some reasonable and necessary properties of 
this function E must be assumed. Since no odd powers in CI appear in any of the 
series solutions, it is reasonable to assume that E has the form: 

E= E(m,c2, cz2, n, (other quantum numbers?)) 

= mOc2y(cr2, n {other quantum numbers?)). (70) 
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The Taylor series of (70) in a2 must re-generate the first two terms of the series 
expansion of the exact solution for hydrogen-like atoms, namely the rest mass and 
the non-relativistic limit. 

Assuming that the energy is a relatively simple expression involving at most 
square roots or roots of any shape or form, one can, without any loss of generality, 
rewrite the energy E and thus y as the root of a polynomial P(v) of arbitrary degree 
where the coefficients are integers. The successful resolution of these coefficients 
determines the closed form expression of the energy. 

Let us begin with a simple form for P(y), say a quadratic, 

P(y)= i Cik&yk4, (71) 
I=0 k=O 

with the understanding that all terms where the total power i $ k > 2 are not used 
in this trial polynomial. Consequently, C,, = C,, = CIz = 0. One then substitutes the 
series solution of E into (71) for any given state and collects the resulting coef- 
ficients which must all be zero, for the first few powers of a. In view of (70), all odd 
powers of CI do not appear in the final expression for y. Thus, CIo = C,, = 0. The 
number of the remaining unknowns can always be reduced from four to three. For 
instance, if C,, # 0, then one could choose to divide both sides of (71) by C, and 
thus without any loss of generality Co, can be set to either 0 or 1. An easier 

oa6h is to let Coo remain unknown and collect a parametric solution at 1 
Either way, one only needs three equations to solve for the coefficien 

r the rest mass and nonrelativistic limit, only the energy to first or 
required to construct the polynomial. 

Using one of the procedures of the Maple program AFA (algebraic function 
a~~roxima~t), one obtains a parametric solution in Cl0 for the ground state: 

coo= -Go, co, = 0, co2 = GO’ (72) 

The term C,, is reduced to a scaling factor for the polynomial P(y). Hence, if 
C,, # 0, one of the roots of P(y) gives the exact solution for hydrogen-i&e atoms 
in the case where n = IIC( = 1. Furthermore, the qua ratic expression in (71) alSo 
yields the correct energy formula in agreement with t e exact solution for all cases, 
where n = ) ~1, namely: 

coo = - c,, Jc2, co, = 0, co2 = czo K2. U-J! 

The remaining case of n # IC is more complicated and requires a fourth-order poly- 
nomial and consequently more equations. However, in view of the fact that one has 
both matter and anti-matter solutions, one expects a solution of the form 
y* =f(~~, n, . ..) and this eliminates all odd terms in y from the polynomial, which 
is given by 

P(y) = i i C(2r)(*k,“2fy?~ = 0. (74,) 
i=O k=O 
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Terms where i+ k > 6 are excluded and hence C,, = 0. For instance, in the case 
N = 4 and 1x1 = 1, Maple yields a parametric solution in CdO, 

CL!, = 0, C,, = C,, = 64C,, , C2,, = 16C,, 
1 co2 = - 128C,(), Cz2 = -52C,,, Cz4 = 36C4, 

(75) 

and one of the roots of (74) yields the correct solution in agreement with the exact 
solution. The solutions presented above were all generated via the second procedure 
of program AFA. In the case above, one needs seven equations and thus the 
energies E,, E2, . . . . E, to construct the series. Since program DIRACl obtains the 
energies to at least ninth order for the first 16 states, this provides enough terms to 
“infer” the closed form solution and at least four more to verify it. 

Thus, in general, one can now reconstruct possible closed form solutions from 
the series coefficients for all states. Of course, in this example, one already had the 
closed form solution but this exercise demonstrates that this approach is a viable 
alternative if one has only an algebraic series solution for a given problem. 

7.2. Matrix Elements 

Since the Maple system provides a means of generating the exact solution of the 
wave-function to high-order, one can algebraically calculate matrix elements to an 
order higher than ever obtained before. 

7.2.1. Matrix elements for the Stark Effect 

The first physical interaction considered is the simple matrix element that gives 
rise to the Stark effect and to electric-dipole transitions. Note that the dimensionless 
parameter t defined in (12) depends on the quantum number n for each state. To 
calculate this matrix element which involves the mixing of states, one has to rewrite 
the parameter t of each state in terms of some common variable such as Y and the 
calculations become rapidly cumbersome. Such an example emphasizes how the 
Maple system can provide a rapid and efficient means of calculation. 

Following the analysis in Section 3 of [S], this matrix element is written accord- 
ing to Eq. (3.5) of [ 101 as 

(76) 

Here A,(, is the normalising constant given by Eq. (2.19) of [ 51, and AZ!;;,, is the 
angular integral that gives the standard selection rules and is delined by Eq. (3.6) 
of [lo]. Finally, 

(77) 

is the radial integral that separates out. All of these integrals are straightforward to 
evaluate with the Maple system, and hence the total matrix element in (76) can be 
written as a power series in ~1’. From the output of program DIRACl, these matrix 
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elements can be computed to high-order in a2 using a simple 
ARK. For example, for the LY~,~ -+ 2~,~, transition, the mat 

O(a’) is given by 

256 
x0:---- 

243 $ 

CL2 : 
192 In (21132) - 248 

729 4 

1 

‘4’ 5832 .& 
(4800 ln(2)2 - 235 - 5760 In (2) ln(3) 

+ 848 In (2) + 1728 In (3)2 - 624 In (3) - 32~‘). 

The exact CX’ and a2 coefficients of the matrix elements for a number of transitions 
is given in Table II. The a0 term is just the well-known nonrelativistic result [3]. 
When reference [lo] was written, there did not seem to exist an exact calculation 
of the a2 coefficient in general. Only the CY’ and 0~~ coefficients of (78) were calculate 
manually. When the exact answers of Table II are compared with the ~~rn~r~cal 
results of Table 4 of [lo], one sees that the numerical methods used for that earlier 
paper are fairly accurate. The ~1~ coefficient differs from the exact answer in the sixth 
decimal place only for most values; the worst case differing in the fifth digit 
transition 2p1,2 -+ 3x,,, . It has been verified that the Maple program S 
vindicates all the numerical results presented in Table 4 of that earlier wor 
the omission of a minus sign in the heading of Table 4-the correct heading is given 
in Table II). 

7.2.2. Matrix Elements for the Hyperfiine Interactiorl 

The second physical interaction considered is the matrix element required for t 
hyperfine splitting. There is no mixing of states in this case and thus the calcula- 
tions are much easier. 

Following the analysis in [6], the matrix elements are defined in [t 
and give the hyperfine splitting as 

where J= 1 K/ - i, A2 is the normalisation constant defined in (18) an 
radial integral, namely, 

where the Im indicates that the imaginary part of the integral is evaluated. One can 
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TABLE II 

Coefficients of - (@n.l.m.u. 1 Hy 1 @,,,,)/q& 

States 

nlm K ?l’l’m’K CP 

Actual values 

a2 

Floating point 

CL0 CL= 

1001 2102 256 192 - 248 ln(27/32) - 

243 $ 729 $ 

310-l 27 108 - 153 ln(4/3) - 

64 Jz 512 4 

2001 3102 ~ $ 27648 69120 -214848 ln(125/144) 

15625 ,f? 78125 4 

210-l - 3 J? 6 

210-l 320-2 $$ 138240 - 265728 ln( 125/144) 

78125 Jir; 

3001 6912 17280 - 6168 ln(25/24) ___ 

15625 $ 78125 3 

2102 320-2 55296 69120 -40128 ln(25/24) ~ 

78125 fi 390625 J-j 

3001 6912 1728 - 

15625 

- 49704+ ln(125/96) 

78125 15625 

3203 165888 ,/% 414720 -473472 ln(3125/3456) 

78125 $ 390625 $i 

420-l 4096 5120 - 5664 ln(9/8) ~ 

6561 @ 32805 ,/@I 

- 

0.6082373206 -0.2222447018 

0.1722297475 -0.0972223658 

1.4447678380 -1.1738135117 

1.7320508076 0.7216878365 

2.2382247104 - 1.1547682733 

0.3128014126 -0.0494417744 

0.3165327741 -0.0427108403 

0.4423680000 0.6654036776 

2.3260313503 -0.2408109698 

0.1139801654 -0.0281664070 

now obtain the matrix elements as a series in c1* using the Maple system. In the 
earlier work of [lo, Eq. (3.10)], (80) was rewritten as 

?? 2 
A2 BE,,=-- 

2m,c a; 
B:x Cl +a2 C,,+a4D,,,+ . ..I. 

where the coefficients B$, and CnlK where evaluated numerically for a number of 
states. At that time, the exact analytic values for all the BljlK and for only a few of 
the CnlK were known [3, 6, p. 1801. For the remaining values of CnlK, the rational 
fractions that reproduced the numerical CnlK ‘s to within 3 in the sixth significant 
figure were computed and presented in Table 5 of that earlier work. The exactness 
of the remaining fractions had yet to be verified. 

Using a Maple program called HYPERFINE, it is now possible to generate such 
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matrix elements to high order. The first three terms of the series in ($1) for t 
ground state [I( IZ, 1, IC) = ( 1, 0, 1 )] are, respectively, 

%K = 1, f&=;, L&=4& (82) 

For the (3, 2, - 2) state, these are 

BfIK= -&j, GK=%> R71K=B& 

and, for the (4, 3, - 3) state, these are 

(83) 

0 1 
dK= - 1344) 

c =1649 
nl K 10080 2 D nl K 

_ 1498447 
67737600. (841 

In general, it is found that this program exactly reproduces all the rational fractions 
that were inferred in Table 5 of [6] and it would be redundant to reproduce this 
table here. Thus, the Maple system provides further vindication of the numerical 
work in that earlier paper. 

8. APPLICATIONS TO OTHER SYSTEMS 

Although the exact solution to the hydrogen-like atom can be found, this is 
certainly not the case for other atomic systems. The separation of I? into 
I?, and the reduction to the two component equation is independent of the form 
of the potential and hence is valid for any general potential V(r). Much of what 
been presented so far remains applicable. However, although (9) can be solv 
numerically for atomic systems, difficulties may occur due to the quadratic energy 

ependence or from more complicated potentials. Any of the above possible 
problems have been circumvented by solving (9) by perturbation theory. This has 
been discussed by Moore as early as 1975 [4, S] and demonstrated at lengt 
recently [IO]. 

This procedure has also been applied successfully to more complex systems, 
namely, atomic systems in the alkali system sequence. The non-relativistic solutions 
are derived from a self-consistent Hartree-Fock calculation. Since one deals with 
closed shells for all the inner electrons, one can model the problem with an effective 
central potential V(r) and consequently Moore’s procedure is applicable. 
of application extends from the lithium atomic system to systems as heavy as 
radium IX (fracium sequence) which represents a very broad range of light and 
heavy nuclei. These applications and their results are the subject a forthcoming 
article. 

9. CONCLUSIONS 

In this paper, it has been shown that Moore’s decoupling technvque is a useful 
method in obtaining approximate solutions to the one-particle Dirac eq~at~Q~. In 
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principle, these solutions can be obtained to within any order in the perturbation 
parameter A. This was demonstrated via the approach of “ghost” states for solving 
the various inhomogeneous equations that appear in the hierarchy of perturbative 
equations. All resulting computations were rendered feasible by the Maple system. 
Once the wavefunction was solved for a number of states, it was also shown that 
the Maple system provided an excellent means of calculating matrix elements to 
any order in A using two examples, namely the hyperfine interaction matrix element 
and the simple dipole matrix element. The resulting programs are compact and 
efficient. 

In practice, one desires the energy expansion to high order, either as a means of 
“summing” the series beyond its radius of convergence using Pade techniques or 
some other method which can handle divergent series, or, as a means of inferring 
possible closed form solutions to the problem (as demonstrated in this work). One 
usually does not want the wave function beyond the first few orders. Albeit the 
method presented solves the energies to order O(/?‘j+“) and only requires the solu- 
tion of the wave function to order O(ni), the calculation of energies to very high 
order requires a number of computations that appears to grow exponentially in j. 
Unless one is solving a new problem for the first time or one has no other alter- 
native, this method is not recommended beyond the solution of the fifth iteration. 
For energy calculations to higher order, one could consider the technique recently 
devised for perturbed Dirac equations [24]. This method involves a useful synthesis 
of the relativistic hypervirial (HV) and Hellmann-Feynman (HF) theorems to 
construct expansions for eigenvalues of perturbed radial Dirac equations to arbitrary 
order. The HVHF method is simple and flexible, requiring no matrix elements. 
Only the unperturbed energy is required as input. It solves for the perturbed 
eigenenergies without ever having to solve for the wavefunction itself. Such a 
method would provide an ideal complement to the one presented in this article 
whenever its application is possible. However, in some applications, the method in 
its present form also requires the use of symbolic computation. 

From this point, this project could proceed in different directions. For instance, 
one can contemplate the solution of perturbative equations via the use of “ghost” 
states for a class of non-relativistic or relativistic quantum mechanical problems. At 
the present stage of development, this class is restricted to separable problems, yet 
not solvable in closed form. 

Another project which is currently under investigation is the generalisation of this 
work to the relativistic 2-body problem, such as the Breit Interaction [27,28]. 
Although this problem is separable in the center of momentum frame, there has yet 
to be found a closed form solution for this type of problem. This is exactly the type 
of problem this technique was designed to tackle. 

Although separability is possible in some problems, this is not the case for many- 
particle systems where the perturbation involves the two-particles interactions of 
the form l/rr,. This type of problem was not examined in this article. However, in 
view of the results of this present work, even in the worst possible scenario where 
one must resort to formal solutions in terms of a basis set, there is the intriguing 
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possibihty that symbolic computation may yet prove a useful means of ~bta~~i~~ 

algebraic solutions to such problems. 
Simple closed form solutions do not exist for most present physical theories. 
owever, the approach presented in this work may be a useful tool in pus 

present theories to the next decimal or the next order of corn lexity [29]. One now 
has to contemplate the representation of wavefunctions by rational approximants 
or continued fractions often because the perturbative methods yield 
series or solutions which cannot be expressed in a straightforw 
representations are often unwieldy to manipulate by hand. 

Symbolic computation presents a viable alternative for the manipulation, calcula- 
tion, and storage of the required objects and it also represents the next level beyond 
the digital calculator as the extension of the human mind. ne may be so bol 
to anticipate that, in the future of theoretical physics, symbolic computation will be 
widely used, not as a result of extravagance or even preference but as a. result of 
necessity. 

APPENDIX 

In this Appendix, the energy formulas given by (48) to (50), which minimise the 
information needed about the wave-function, are derived. 
g0 and I?, are hermitian. Starting from (5), 

(Ao-Eo)l@i)= -A, I@'-')+ (‘4.4 j 

and taking the inner product of ( Bk / with (A.1 ) gives 

I 
(~kjIjO-EoIdS[)=-(~kIEi,/~)i~‘)+ (A.2) 

For the remainder of this section, the inner products ‘) are replaced by t 
notation Mt, as defined in (32). Taking the adjoint I), replacing 1 with 
substituting this result into (A.2) with E replaced by I- I, results in 

i- 1 

en k= 1 and i=j, 

(COO, 2, ,a+‘)=(@p’/ A, ,P)+M:-‘- 

1 

E,M,’ --i-’ 

i=l 

and, similarly, when k = 2 and 1= j - 1, 

‘IA,i~‘~2)=(~2jEjlI~J-3)+ i E&f_:-‘- Eil%f-‘-*. (A.5 i 
,=I i= 1 
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Substituting (AS) into (A.4) gives (@‘I 2, 1 QiP’) in terms of (@‘I A, 1 @j-‘>. 
Thus, as k is incremented while I is decremented, by recursive substitution, one 
constructs a formula that reduces the matrix element in (@’ 1 I?, 1 a,‘- ’ ) to 

In order to generate (4X), set I= 2p (p = 1,2, . ..). and k =p - 1, (A.6) becomes 

p--l j  p-l *p-j 

(~“~ri,(y62p-1)=(~P~1/~l~~p)+ c c EiMz’j- c c EiMyPi-j. 
j=l is1 j=l i= 1 

(A.7) 

The first double summation on the right can be rewritten as (~2.2) 

p-1 j  p-l j-l P--l 

c c EiMj2p_;j= c c EiMi2p_;’ + 1 E,M$-j. (A.81 
j=l i-1 j=2 i=l j=l 

Defining m = 2p -j, the double summation on the right can be rewritten as, with 
MS: real, 

p--.i i-1 2pp2 *p--m-1 

,s2 i;l EiMj2p_‘.‘= c 1 EiMz-iP” (A.91 
m=p+l i=l 

and, since m is only a dummy variable, it can be replaced by j. Similarly, the second 
summation in (A.7) can be decomposed into 

p-l *p-j p-l 2p-j-1 2p- 1 

1 c E,Mj2P-‘-j= c 1 EiM,2P-j-i+ c Em&@‘-” (A.10) 

j=l i=l j=l i=l m=p+l 

and the dummy variable m can be replaced by i. Next, using the identity, 

p-2 p-j-l *p-2 *p-j-l 

1 2 &$fiZp-j--i 1 c E,M?-j-i, 
I 

j=l i= 1 j=ptl i=l 

(A.1 1) 

The proof of (A.ll) is as follows: Rewrite the left-hand side as 

p-2 p-j-l p--2 p-i-l 

jC1 iCl EiMywiei= ,;, Ei c Mj+-‘. (A.12) 
,=l 

This identity follows by comparing the sums term by term. Next, by defining 
j’ = j -p, the right-hand side of (A.1 1) can also be rewritten as 

2p-2 2p-j- 1 p-2 p-j’-1 

2 c EiMi2p--i-- = c c E,M;,‘d-‘, 

j=p+ 1 i= 1 f-1 i=l 

(A.13) 
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which, as for (A.12) and chopping the prime, becomes 

2~~2 2p-j-1 P-2 p-i- 1 

1 c E&-i= c Ei c M,?‘;-i. 

3=p+l i=, i=, ,=l 

Comparing (A.14) with (A.12), (All) is established if 
p-i& 1 p-i--l 

C My--i-i= C p-k-r 
ktp . 

j=l k=l 

(AEd) 

This can be readily seen by setting j’ = p - k - i on the right side of the above and 
then dropping the prime. 

Combining (A.8) to (A.ll) into (A.7) and after some rearranging of terms, 
Eq. (33) of the conventional energy formula becomes 

E,= (Qpp’l -ir, I@“>-E,M,P-2 

p- 1 Zp--j- 1 

-j;, c EiM,2ppi? (A.15) 
i=p-, 

This formula only requires the knowledge of the wavefunction to order p. The 
double summation in (A.15) can be exactly rewritten as 

p--l 2P-J-1 

c c EiMfP-j-i 

j=l i=p-1 

p--l 
=,:,"i i ~~~jl+2~2L:,2p~-iMjl'--i-i. 

i=l i=p i=l 

Again, the proof of this identity is similar to that of (A.12). Substitution of this 
identity into (A.15) and some term rearranging yields 

p-l 

E~~=(@~-‘I r?, IcDp)- c E, i &I;“;.-‘-I%,~, 
. j= 1 i=l 

2p- 1 2p - 2 zppi-1 

-i=;+l E&f-‘- c E, 1 
i=p j=O 

The sum inside the double summation above can be decomposed as 

(‘4.17) 

2p-i-l 2p - i 
c ji,fizp--i-j= C ~~-i-J-M~p_,. 

J=O j=O 

(A.18) 

The summation on the right is identically zero by virtue of the orthogonahty con 
tions expressed in (31). Thus, the number of terms in (A.16) is almost halved. This 
illustrates the full exploitation of the orthogonality conditions and (A.17) becomes 
(481. 
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Odd Case 

The proof for the odd case of (49) proceeds in complete analogy with the above. 
A further reduction on Eq. (49) can be obtained by exploiting the commutativity of 
real inner products involved in the orthogonality equations. This reduction creates 
a further subdivision of the odd case in (49) into even and odd cases. 

Thus, for m = 2k, where k = 1, 2, 3, . . . . 

2k k-l 

j=O j=O 

and, for m = 2k + 1, where k = 0, 1,2, . . . . 

2ktl 
c MF+l-J=2 2 MF+l-i=O. 

j=O j=O 

(A.19) 

(A.20) 

Using both (A.19) and (A.20), Eq. (49) becomes (50). 
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